
Recent Posts
Recent Comments
Yancy on Intrinsic vs. Extrinsic S… priyankab567 on Interacting with ML Model… Staff Answers on Neural Networks 1: The ne… Akhil Kumar on Gaussian kernels Think Big, a Teradat… on Kmodes Archives
 December 2016
 November 2016
 October 2016
 June 2016
 April 2016
 January 2016
 November 2015
 October 2015
 July 2015
 June 2015
 May 2015
 January 2015
 September 2014
 June 2014
 May 2014
 March 2014
 February 2014
 January 2014
 December 2013
 October 2013
 September 2013
 August 2013
 July 2013
 June 2013
 May 2013
 April 2013
 March 2013
Categories
Meta
Monthly Archives: August 2013
Mapper and the choice of scale
In last week’s post, I described the DBSCAN clustering algorithm, which uses the notion of density to determine which data points in a data set form tightly packed groups called clusters. This algorithm relies on two parameters – a distance … Continue reading
Posted in Clustering, Unsupervised learning
4 Comments
Clusters and DBScan
A few weeks ago, I mentioned the idea of a clustering algorithm, but here’s a recap of the idea: Often, a single data set will be made up of different groups of data points, each of which corresponds to a … Continue reading
Posted in Clustering, Unsupervised learning
7 Comments
Graphs and networks
In last week’s post, I discussed the difference between the extrinsic and intrinsic structures of a data set. The extrinsic structure, which has to do with how the data points sit in the data space, is encoded by the vector … Continue reading
Posted in Uncategorized
2 Comments
Intrinsic vs. Extrinsic Structure
At this point, I think it will be useful to introduce an idea from geometry that is very helpful in pure mathematics, and that I find helpful for understanding the geometry of data sets. This idea is difference between the … Continue reading
Posted in Unsupervised learning
7 Comments